Sunday, 21 January 2018

Probability And Statistics Symbols

Probability And Statistics Symbols



Symbol

Symbol Name

Meaning /  definition

 Example

P(A ∩ B)
probability of events intersection
probability that of events A and B
P(A∩B) = 0.5
P(A)
probability function
probability of event A
P(A) = 0.5
P(A | B)
conditional probability function
probability of event A given event B occurred
P(A | B) = 0.3
P(A ∪ B)
probability of events union
probability that of events A or B
P(AB) = 0.5
F(x)
cumulative distribution function (cdf)
F(x) = P(X ≤ x)

f (x)
probability density function (pdf)
P(a x b) = ∫ f (x) dx

E(X)
expectation value
expected value of random variable X
E(X) = 10
μ
population mean
mean of population values
μ = 10
var(X)
variance
variance of random variable X
var(X) = 4
E(X | Y)
conditional expectation
expected value of random variable X given Y
E(X | Y=2) = 5
std(X)
standard deviation
standard deviation of random variable X
std(X) = 2
σ2
variance
variance of population values
σ2 = 4
˜x
median
middle value of random variable x
˜x=5
σX
standard deviation
standard deviation value of random variable X
σX  = 2
corr(X,Y)
correlation
correlation of random variables X and Y
corr(X,Y) = 0.6
cov(X,Y)
covariance
covariance of random variables X and Y
cov(X,Y) = 4
ρX,Y
correlation
correlation of random variables X and Y
ρX,Y = 0.6
Mo
mode
value that occurs most frequently in population

Md
sample median
half the population is below this value

MR
mid-range
MR = (xmax+xmin)/2

Q2
median / second quartile
50% of population are below this value = median of samples

Q1
lower / first quartile
25% of population are below this value

x
sample mean
average / arithmetic mean
x = (2+5+9) / 3 = 5.333
Q3
upper / third quartile
75% of population are below this value

s
sample standard deviation
population samples standard deviation estimator
s = 2
s 2
sample variance
population samples variance estimator
s 2 = 4
X ~
distribution of X
distribution of random variable X
X ~ N(0,3)
zx
standard score
zx = (xx) / sx

U(a,b)
uniform distribution
equal probability in range a,b
X ~ U(0,3)
N(μ,σ2)
normal distribution
gaussian distribution
X ~ N(0,3)
gamma(c, λ)
gamma distribution
f (x) = λ c xc-1e-λx / Γ(c), x≥0

exp(λ)
exponential distribution
f (x) = λeλx , x≥0

F (k1, k2)
F distribution


Bin(n,p)
binomial distribution
f (k) = nCk pk(1-p)n-k

χ 2(k)
chi-square distribution
f (x) = xk/2-1ex/2 / ( 2k/2 Γ(k/2) )

Geom(p)
geometric distribution
f (k) =  p (1-p) k

Poisson(λ)
Poisson distribution
f (k) = λkeλ / k!

Bern(p)
Bernoulli distribution


HG(N,K,n)
hypergeometric distribution


No comments:

Post a Comment

Search This Blog

Shayari

जो कर दे इशारा तो रुक जाऊंगा,गर करे तू  इशारा तो चुप जाऊंगा l कभी एक इशारा तू कर तो सही, तेरे एक इशारे पे मिट जाऊंगा l